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Abstract--We have derived a simple kinematic model of the deformation that results from extension accommo- 
dated by movement of a crustal block along two- and three-dimensional listric fault surfaces. The model 
accurately reproduces deformation observed in a series of scaled analogue models. The kinematic model is based 
on the simple assumption that lines within the hangingwall that are normal to the fault surface before deformation 
remain so following deformation. An additional constraint built into the model is that of incompressibility. 

Deformation in the hangingwall block as observed in the laboratory experiments and predicted by the 
kinematic model is characterized by: (1) a key-stone structure (or crestal-collapse graben) at some finite distance 
from the fault tip; and (2) pure solid-body rotation of the hangingwall head area near the tip of the fault. In three 
dimensions, the central region of the model undergoes extension in a direction normal to the direction of imposed 
displacement in such a way that the direction of dip of the upper surface of the hangingwall is aligned with the 
direction of extension. This result provides quantitative support for the use of dip analysis to infer tectonic 
transport direction. We also show how the distribution of extension within the hangingwall is affected when the 
constraint of constant displacement along the fault is relaxed. 

INTRODUCTION 

CRUSTAL extension is accommodated by movement 
along discrete, often listric, normal faults. In many 
instances, the exact fault geometry is poorly constrained 
and, therefore, the nature and amount of extension must 
be derived from the geometry of originally-flat marker 
horizons within the hangingwall (Verral 1981) or within 
the overlying sedimentary section. To be accurate, this 
approach must be based on a proper understanding of 
the internal deformation of the hangingwall and how it 
relates to the fault geometry. Several geometrical 
models have been proposed that relate the geometry of 
the hangingwall surface to the geometry of the fault 
surface and the amount of extension (e.g. Dula 1991). 
The vertical shear model (Verral 1981), the inclined 
shear model (White et al. 1986) and the slip-line model 
(Williams & Vann 1987) are just a few examples. Most of 
these models are characterized by their relative sim- 
plicity which makes them particularly suitable for direct 
use on migrated seismic sections. 

Although some models have been successful at accu- 
rately predicting fault geometries in natural or synthetic 
test cases (Dula 1991), it is quite puzzling that appar- 
ently none of them is capable of reproducing the defor- 
mation patterns observed in scaled laboratory experi- 
ments (McClay & Ellis 1987a,b) or in the field. Indeed, 
in cases where friction along the fault is neglected, sand- 
box models predict that hangingwall deformation is 
accommodated by extension localized at the crest of the 
rollover anticline (Fig. la) whereas the head of the 
hangingwall rotates but remains undeformed. This con- 

centration of deformation in the hangingwall appears to 
be independent of the material used in the experiments 
(McClay 1989), suggesting a purely geometrical rather 
than mechanical control. Similar features encountered 
in the field have led to the suggestion that localized 
extension in the hangingwall block reflects the geometry 
of the listric fault and must therefore indicate a local 
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(Modified from McClay 1989) 
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flat 
(Modified from Gibbs 1984) 

Fig. 1. (a) Main structures observed by McClay (1989) in defor- 
mation experiment: extension along the crest of the rollover anticline 
and rotation of the hangingwall toe. (b) Conceptual model of the 
deformation of a crustal block sliding along a listric normal fault made 

of a succession of ramps and flats. 
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change in the fault surface geometry (Gibbs 1984) (Fig. 
lb). 

In this paper, we present the results of a series of 
scaled laboratory experiments designed to address the 
problem of hangingwall deformation during crustal ex- 
tension along two- and three-dimensional listric fault 
surfaces. The results of the experiments are then inter- 
preted and used as the basis for a new kinematic model 
based on what we term the 'rule of the normal'. We also 
show how the constraint of incompressibility can be 
easily incorporated into the model. We investigate the 
effect of relaxing the condition of constant displacement 
along the fault surface on the distribution of defor- 
mation in the hangingwall. Finally, we use the kinematic 
model to provide a quantitative support for the use of 
dip analysis for inferring regional kinematic histories in 
areas of non-ideal extension (Scott et al. 1994). 

EXPERIMENTAL METHOD 

Apparatus 

The experimental program was carried out in two 
Perspex deformation rigs designed to simulate different 
detachment surface orientations relative to the direction 
of extension. The first series of experiments was carried 
out in an effectively two-dimensional deformation rig 
measuring 50 x 30 x 10 cm (Fig. 2a). The detachment 
surface is a simple ramp structure shaped as an exponen- 
tial curve with a decay constant of 5 cm. In plan, the 
trace of the surface is aligned perpendicular to the 
direction of extension so that only normal movement, 
with no strike-slip component, could occur on it, similar 
to previous sandbox experiments (e.g. McClay & Ellis 
1987a,b, Ellis & McClay 1988, McClay 1989). The 
modelling rig for the second series of experiments dif- 
fered from this in that the detachment surface was 
composed of two symmetrical halves, which we will later 
refer to as 'segments', oriented at 45 ° to the direction of 
extension (Fig. 2b). 

The detachment surfaces in these models were 
moulded from Perspex to the desired shape and attached 
to the fixed walls of the deformation rig. Extension was 
achieved using a thin sheet of mylar overlying the 
surfaces and attached to a motor driven roller which 
gave a constant displacement rate of 10 cm h-i  (approxi- 
mately 2.77 × 10 -3 cm s-l).  The rigid nature of the 
detachment surfaces effectively limited deformation to 
the hangingwall above them. In the two-dimensional 
experiment, the mylar sheet could be simply cut to fit the 
detachment surface. However, in the more complicated 
three-dimensional case, the changing area and shape of 
the detachment surface going from the curved 'head 
region' in the corner formed by the fault segments, to the 
fiat area of the deformation rig, required a series of slits 
and overlapping segments to be added to the mylar sheet 
to allow it to fan out or contract as required without 
buckling or otherwise disturbing the overlying block of 
material. 

The analogue hangingwall consisted of multiple layers 
of homogeneous 250-500/~m diameter sand with an 
angle of internal friction of 33.5 ° constructed by adding 
sand to the rig and carefully levelling it at the desired 
thicknesses. Marker horizons and a grid of coloured 
sand on the surface of the models enabled internal and 
surface deformation to be evaluated. The sand used was 
effectively cohesionless and isotropic. However, the 
extensive analogue modelling work of Ellis & McClay 
(1988) suggests that, in the case of a listric detachment 
surface, the structures formed are effectively indepen- 
dent of the materials used, and thus, the results of the 
experiments presented here are probably generally 
applicable. 

Experiments were continued only until freely cascad- 
ing surfaces began to develop in the sand (i.e. as slopes 
reached 33.5°). Deformation was recorded primarily 
using 35 mm time-lapse still photography through the 
clear sides of the deformation rig. Oblique and plan 
views were also recorded to study the development of 
surface features. 

The effect of friction along the vertical sides of the 
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Fig. 2. (a) Sketch of the two-dimensional deformation rig wherein the normal fault trace is perpendicular to the direction of 
imposed displacement ('ideal orthogonal' extension case). (b) Sketch of the three-dimensional deformation rig made of two 

symmetrical fault surfaces oriented at 45 ° with respect to the direction of displacement ('non-ideal' extension case). 
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deformation rig was investigated in one of the experi- 
ments. An additional piece of mylar was added between 
the sand pack and one of the sidewalls and was forced to 
move with the sand pack. An additional piece of mylar 
coated with sand was attached to the deformation rig on 
the other side of the sand pack. Thus, friction was 
reduced along one side of the sand pack and enhanced 
on the other side. The deformation patterns observed 
through both sidewalls were slightly translated in the 
direction of imposed displacements but otherwise 
almost identical to those formed in a similar experiment 
where the sand pack was forced to slide directly against 
the sidewalls of the deformation rig. 

Sca~ng 

In selecting an appropriate material to simulate tec- 
tonic processes in analogue modelling experiments, the 
effect of scaling on physical parameters must be appreci- 
ated (Hubbert  1937, Horsfield 1977). In the experiments 
described here,  a 10 cm deep model is used to represent 
deformation in the upper 1-10 km of the Earth 's  crust, 
giving a reduction in scale by a factor of 10-4-10 -5. 
Thus, for typical crustal rocks with a cohesive strength of 
5-10 MPa, the corresponding modelling material should 
have a cohesive strength of the order  of 10-20 Pa 
(Hubber t  1937). This value is so small in comparison to 
the principal stress values in the model that a cohesion- 
less material such as loose sand can reasonably be used 
as the modelling medium (Horsfield 1977). However ,  it 
should be noted that the size of sand grains used in the 
analogue experiment is not scaled properly (Ellis & 
McClay 1988), resulting in the production of shear zones 
in the analogue model,  rather than discrete fault planes. 

The angle of internal friction is a dimensionless quan- 
tity, and is thus not affected by the scaling of the model. 
The angle of internal friction of the sand used in the 
experiments (33.5 ° ) falls within the range of experiment- 
ally obtained values for typical crustal gneisses, which 
range from 35.4 ° for dry to 31.4 ° for wet conditions 
(Jaeger & Cook 1979). 

TWO-DIMENSIONAL MODEL RESULTS 

The deformation pattern observed in repeated experi- 
mental runs of the two-dimensional model can, like that 
recorded in similar experiments by Ellis & McClay 
(1988), be broken up into three regions of varying 
behaviour (Fig. 3a): 

- - t h e  proximal region (P) of the hangingwall, orig- 
inally overlying the steep section of the fault (S), is 
characterized by pure solid-body rotation; 

- - t h e  distal region (D) of the hangingwall, originally 
overlying the fiat section of the fault (F), has undergone 
pure solid-body translation; 

- - t h e  transitional region (T) of the hangingwall, be- 
tween regions P and D and originally overlying the 
intermediary section of the fault (I), has undergone 
horizontal extension and bending. 
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Fig. 3. Sketch of the results of one of the two- and three-dimensional 
experiments. (a) Line drawing of major structures observed through 
the side wall in one of the two-dimensional experiments. We dis- 
tinguish proximal (P), transitional (T) and distal (D) regions of the 
hangingwall and steep (S), intermediary (I) and flat (F) sections of the 
fault surface. (b) Interpretation of the results of one of the three- 
dimensional experiments seen from above. The dark thick lines are 
interpreted normal faults; the dashed thin lines are the post- 
deformation position of an initially regular grid marked on the sand 
surface. On the left-hand side of the bisector, the grid was drawn 
parallel to the fault surface trace whereas on the right-hand side, the 
grid was drawn parallel to the edges of the experimental 'box', or the 

direction of displacement. 

Region P has a horizontal dimension of approximately 
80 mm, or about 80% of the thickness of the hanging- 
wall. It undergoes very little internal deformation, as 
shown in Figs. 4(a) & (b). In region T, the model passes 
into a roll-over antiform, which coincides with the devel- 
opment  of a complex crestal collapse graben. The gra- 
ben is approximately 120 mm wide, or 120% of the 
hangingwall thickness, and is bounded by at least three 
pairs of conjugate planar normal faults dipping at angles 
of 55-60 ° . These faults break the surface of the hanging- 
wall and produce a series of prominent 'fault scarps' on 
the surface of the model (Fig. 4b). In region D, the 
model is deformed by simple, non-rotating, solid-body 
translation with very little apparent internal defor- 
mation. 

THREE-DIMENSIONAL MODEL RESULTS 

The deformation pattern produced in the three- 
dimensional modelling experiments is bilaterally sym- 
metrical about the centre line of the deformation rig 
(Figs. 3b and 4c). The surface of each of the mirror- 
image halves is marked by a similar tripartite division of 
features as seen in the two-dimensional modelling ex- 
periments discussed above. In detail, the surface defor- 
mation is characterized by: 
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--two very fiat-surfaced proximal regions, P1 and P2, 
apparently deforming by solid-body rotation; 

--two distal regions, D1 and D2, deforming by solid- 
body translation; 

--two transitional regions, T1 and T2, characterized 
by normal fault scarps the strikes of which suggest that 
extension in regions T1 and T2 is aligned with the 
direction of maximum dip of each fault segment; 

- -a  central region, C, comprising the 'beak' of the 
hangingwall, characterized by surface fault scarps 
aligned with the direction of imposed displacement, 
therefore indicating that extension in region C is perpen- 
dicular to the direction of imposed displacement. 

Overall, the observed structural pattern in the three- 
dimensional model is suggestive of twin sets of the 
features seen in the two-dimensional experiments. Each 
set is associated with one of the fault surfaces but they 
appear to interfere with one another in the middle of the 
deformation rig. In region C, the surface is far more 
steeply dipping parallel to the side walls, and hence to 
the direction of extension, than perpendicular to the side 
walls of the deformation rig (measured slopes in this 
latter direction range from 3 ° to 5°). 

INTERPRETATION OF EXPERIMENTAL 
RESULTS 

The results of the two-dimensional experiments show 
that maximum deformation within the sand pack does 
not take place in regions located initially above sections 
of the fault where curvature is maximum (region P). 
Rather, deformation is most intense near the surface at a 
finite distance from the fault tip (region T). Almost 
identical deformation patterns were produced by Ellis & 
McClay (1988) and McClay (1989). Their use of a wide 
array of modelling materials demonstrates that hanging- 
wall deformation is strongly controlled by the geometry 
of the listric detachment. However, no general kinema- 
tic model like the so-called 'chevron' construction of 
Verrall (1981), has yet been presented to demonstrate 
how movement along a listric fault of constantly decreas- 
ing curvature can produce localized extension at the 
surface of the deforming hangingwall at some finite 
distance from the tip of the fault. In the following 
section, we develop a kinematic model which accurately 
predicts the deformation observed in the experimental 
models. 

A simple kinematic model: the rule of the normal 

The analogue experiments we performed, although 
meant to represent movement of a crustal block along a 
normal listric fault, are in fact equivalent to deforming 
the hangingwall by unfolding its curved base as shown in 
Fig. 5. Indeed, the mylar sheet inserted between the 
sand and the rigid fault is unstretchable, so the base of 
the hangingwall experiences no strain in a direction 
tangent to the fault surface as a result of drag on the 

detachment surface. From this simple observation, one 
may deduce a rather general deformation law within the 
hangingwall: because the internal deformation of the 
hangingwall is driven solely by bending imposed along 
its base, it is natural to assume, as in plate bending 
theory, that a line normal to the base of the hangingwall 
remains normal to the base of the hangingwall, even 
after finite deformation. This purely geometrical rule, 
which we named the 'rule of the normal', is equivalent to 
Kirchoff's hypothesis that serves as the basis of the 
theory of thin plate bending (Fung 1963, p. 458). It is 
also identical to the slip-line construction of Williams & 
Vann (1987) in the limit of infinitesimal displacements. 

It is important to note that the rule of the normal can 
only be used in situations where one, and only one, 
normal to the fault surface passes through any given 
point within the hangingwall. If, for instance and as 
pointed out by Wheeler (1987), the fault curvature is 
such that a region of the hangingwall is at a distance from 
the fault surface greater than the local radius of curva- 
ture of the fault, the rule of the normal becomes ambigu- 
ous. 

We can use the rule of the normal to describe the path 
followed by a particle within the hangingwall from its 
original position xo(X) to its final position xl (X). x0 and 
xl are spatial co-ordinates measured in a system of 
co-ordinates that is fixed in space; X are material co- 
ordinates attached to the deforming body. Although the 
rule of the normal is conceptually very simple, its practi- 
cal implementation, as demonstrated below, is not 
always straightforward. 

As an example, consider particle A in Fig. 6(a) that is 
located at xo(A) before deformation, a distance r from 
the fault surface. To find its final location after the 
hangingwall has been moved by a distance u0, first 
project A normally to the fault surface to point A',  then 
translate it along the fault surface by an amount u0, 
measured as a distance along the fault, to position A" 
and finally project it back to A" in such a way that it is 
still located at a distance r from the fault surface. Note 
that the distance along a curved surface parameterized 
by z = f(x) is given by: 

u0 = + dx. (1) 
X 

Therefore, to find the increment in horizontal co- 
ordinate, Ax, that corresponds to a given displacement 
u 0 along the surface, one must solve a first-order integral 
equation in x. 

Particle B, originally an infinitesimal distance dl from 
A but at the same distance r from the fault, will follow a 
similar but not identical path as shown in Fig. 6(a). The 
distance between A' and B' is: 

dl 

where F 1 is the radius of curvature of the fault in the 
vicinity of A' and B'. The translation along the fault is 



K i n e m a t i c  m o d e l  f o r  d e f o r m a t i o n  a l o n g  l i s t r ic  n o r m a l  f a u l t s  

Fig. 4. Results of one of the two- and three-dimensional experiments. (a) Two-dimensional experiment. Side view of the 
deformed sand pack seen through the transparent side of the deformation rig. (b) Two-dimensional experiment. Oblique 
view of the sand pack under oblique lighting to highlight the surface fault scarps. (c) Three-dimensional experiment viewed 
from the top; the illumination is from the upper left corner. The results are almost symmetrical with respect to the bisector 
plane of the two fault surfaces; the apparent asymmetry is due to the oblique illumination. The distal (D1 and D2), 

transitional (T1 and T2), proximal (P1 and P2) and central (C) regions of the hangingwall are labclled. 
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the same for points A'  and B' and therefore dl" = dl ' .  
The distance between A"  and B" is: 

dl"  = dl"(1-~22) ' (3) 

where F 2 is the radius of curvature of  the fault in the 
vicinity of A" and B". The total stretch in a direction 
tangent to the fault surface, A0, is therefore given by: 

r 
1 - - -  

dl F 2 (4) 
Ao = dl"  r 

1 - - -  
F1 

The radius of curvature, F, of a curve described by z = 
f(x) is: 

+ 
~Ox/J 

r = o )  (5) 

Ox 2 

The line joining A and B also undergoes finite rotation 
during the deformation of the sand pack. Following the 
rule of the normal, the rotation, 110, is given by the dot 
product of the unit normals to the fault (Fig. 6a) at 
locations A ' ( n l )  and A" (n2): 

12 o = arccos (nx" n2). (6) 

Note that the direction of the normal to a curve 
represented by z = f(x) is given by n = [-(Of/Ox), 1]. 

The stretch, A0, and rotation, f~0, are in fact the 
principal components of second-order tensors, A and f~, 
that are defined as the symmetrical and anti-symmetrical 
parts, respectively, of the deformation gradient tensor, 
F = (OX/Oz). The deformation gradient conceptually 
measures the difference in path followed by two material 
points initially next to each other. 

Following the method described above, we have esti- 
mated the stretch, A0, and rotation, I/o, for a series of 
points originally located at the nodes of a rectangular 
grid across the hangingwall. The listric fault is rep- 
resented by an exponential curve of the form: 

z = f(x)  = -Zo 1 - exp - , (7) 

where x and z are the horizontal and vertical co- 
ordinates, respectively, z0 is the depth to detachment, 

and 2 is the 'listricity' of the fault. The results, shown in 
Fig. 7, can be summarized as follows: (1) the proximal 
region of the hangingwall does not deform internally but 
undergoes a large amount of rotation; (2) the region of 
maximum extension is located at the surface of the sand 
pack at the top of an antiform developing in the transit- 
ional region of the hangingwall; and (3) extension 
rapidly decreases to become negligible in the distal 
region of the hangingwall. Comparing the kinematic 
model results with the analogue model results shown in 
Fig. 3, we find that the simple kinematic model has 
reproduced all of the large-scale characteristics of the 
deformation field observed in the laboratory experi- 
ment. 

Location of  the crestal graben 

The kinematic model, based on the rule of the normal, 
demonstrates that movement on a simple listric fault 
gives rise to strain localization away from the fault tip. 
This point may be explicitly demonstrated as follows: we 
assume that the hangingwall has been displaced by a 
distance u > 2, such that the hangingwall is now located 
over the fiat section of the fault where the local radius of 
curvature is very large (F-~ oo as (O2f/Ox2) --~ 0). A point 
on the surface of the hangingwall, originally at location 
[xs, 0] and a distance rs from the fault (Fig. 6b), experi- 
ences a finite stretch, As, given by: 

1 
A~ - ~ ,  (8) 

l _ r ~  
Ff 

where Ff is the local radius of curvature of the fault at the 
point [xf, f(xf)], the normal projection of [xs, 0] onto the 
fault. The quantities x~, Ff and rs may all be expressed in 
terms of xf, f(xf) and its derivatives in the following 
manner: 

Xs= Xf + f Of 
Ox 

,9, 

~Ox/J 
Ff = 02 f 

Ox 2 

Sl 16:it-! 

A 2 Z >  J 

A = B + C  

Fig. 5. Movement along a listric normal fault (A) is equivalent to a translation (B) followed by an unfolding of the base (C). 
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\ t~.z.l / 
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Fig. 6. (a) Geometrical construction used in the rule of the normal. Two material points (A and B) originally at the same 
distance r from the fault surface and a distance dl from each other follow slightly different paths as a result of internal 
deformation of the hangingwall. The local stretch resulting from the displacement of the hangingwall is given by the ratio of 
dl and the new distance between the same material points (now at A" and B"), d/ ' .  The rotation, 1~, is given by the dot 
product of the local normal to the fault, nl, before deformation and, r~, after deformation. A radius of curvature (Fi) may be 
defined at each point along the fault surface. (b) Geometrical parameters used to calculate the location of the roll-over 

antiform or crestal graben following finite displacement of the hangingwall. 

Hencky strain 

Rotation 

Markers 

Fig. 7. Results of the kinematic model (to be compared with the 
results of the two-dimensional sand box experiment of Figs. 3a and 
4a). (a) Distribution of deformation in the deformed sand pack; the 
arrows are aligned along the direction of the local maximum stretch 
component and their amplitude is given by the value of the Hencky 
strain, e = In Ao. (b) Distribution of material rotation in the deformed 
sand pack. At any given point, the rotation angle is given by the angle 
between a vertical line and the position of a material line that was 
vertical in the undeformed configuration. (c) Geometry of an initially 
rectangular grid following deformation; the dark lines are contours of 
constant stretch. The small vertical arrow indicates the location of the 
maximum surface extension as computed from the rule of the normal. 

The total stretch A s is therefore given by: 

1 + 
\Ox/ 

As= [, f ie 02f" (10) 
1 + ~x) + f Ox 2 

Normal faulting in the hangingwall will preferentially 
take place at a point originally at a distance Xs,m from the 
fault tip for which the stretch at the surface is maximum, 
that is where 

OAs - 0. (11) 
Oxf 

Using equation (7) for f(x) and after some tedious 
algebra, one may derive the following expression for 
Xs,rn~ 

~ [ 1 -  exp (-3~m)] exp ( - 3 - ~ ) ( 1 2 )  Xs, m = Xf, m if- -~- 

where 

= , (13) 

or, in terms of dimensionless variables Xs,m = (Xs,m/~') 
and z0 = (Zo/~): 
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X's, m =  Cf, m "+" [1 - exp ( - - X f , m ) l  exp ( -Xf ,m)  

.~f,m = In [ 2(22+1) ] 
-1 + X/1 + 4(2  + 15 

(14) 

Note that 20 is equal to the tangent of the dip of the fault 
where it intersects the surface. 

We can therefore predict the approximate normalized 
distance, Xs,m, from the so-called crestal graben to the 
hangingwall tip, as a function of the tangent of the slope 
of the fault at the surface, 20. This relationship, shown in 
Fig. 8, indicates that 2s,m is inversely proportional to 20. 
The vertical bar in Fig. 8 is the limit beyond which the 
rule of the normal fails as some points within the 
hangingwall are intersected by normals from several 
parts of the detachment fault. 

a particle, xt (X), along the normal to the fault surface. 
The total tangential stretch, A0, is then given by: 

r *  

F2 
Ao - - - ,  (16) 

r 
1 - - -  

F1 

where r* is the 'rectified' distance from the fault after 
isochoric deformation, r* may be computed by integrat- 
ing the stretch An along the normal from the fault 
surface: 

r t I Ir r 
r*= Anar'= 

o Jo Ao Jo 1 r 
F2 

(17) 

Dilatation 

So far, the kinematic model has assumed that the 
distance from any point within the hangingwall to the 
fault is preserved during deformation so that the stretch, 
A0, is restricted to a direction perpendicular to the fault 
normal. This implies unrealistic levels of dilatation in 
some circumstances. The kinematic model may be re- 
fined to include a condition of incompressibility such 
that the deformation of the hangingwall is non- 
dilatational. Since we are only working in two dimen- 
sions, incompressibility implies that there should be a 
component of stretch in the direction of the normal, A,, 
such that: 

AnA0 = 1. (15) 

The condition of incompressibility is added to the kine- 
matic model by rectifying the computed final position of 

This integral equation in r* may be transformed into the 
following differential equation with no loss of gener- 
ality: 

r 
1 - - - -  

Or__~* = 1P..._..~l. (18) 
Or r* 

1 - - -  
F2 

The general solution of this is: 

Fz - !./F 2 - 2F2r + r 2 I"2 + C, r* 
V F1 

(19) 

where C is an arbitrary constant. Because points that are 
originally located on the fault surface remain on the fault 
surface after deformation (r = 0 -+ r* = 0), C = 0. The 
'rectified' tangential stretch, A0, is therefore given by: 

• /  r r 2 
1 - 2~22 + F~2  

Ao = (20) 
r 

1 - - - -  

F1 

5 I I I I 

4 - -  

J 

3 - -  

S ,  

I I 
J 50 60 70 80 

Fault dip (degrees) 

Fig. 8. Position of the crestal graben, xs.m as a function of the fault dip 
at the surface measured from the hangingwall tip and normalized by 
t h e  fault soling depth, z0, as derived from the kinematic model; the 
r e g i o n  o f  t h e  c u r v e  to  t h e  right of the vertical line corresponds to fault 

g e o m e t r i e s  w h e r e  t h e  rule of the normal cannot be applied. 

This modification to the kinematic model is, in fact, the 
generalization of the area-corrected version of the slip- 
line model developed by Wheeler (1987). 

The results shown in Fig. 7 have been re-computed 
incorporating the condition of incompressibility and are 
displayed in Fig. 9. The main difference is the subsi- 
dence of the surface in the region of maximum exten- 
sion, that is the crestal graben. The predicted 
hangingwall geometry may be once again compared with 
the results of the two-dimensional experiments (Fig. 3) 
confirming that the condition of incompressibility has 
improved the predictions of the kinematic model: the 
surface of the hangingwall subsides in regions of finite 
extension. 

That the amount of surface subsidence observed in the 
scaled experiment is smaller than the predictions of the 
dilatation-corrected kinematic model suggests that de- 
formation of the sand pack was not purely isochoric. 
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Henky strain 

Rotation 

II 
Markers 

Fig. 9. Results of the kinematic model similar to those of Fig. 7 but including the condition of incompressibility. 

GENERALIZATION OF THE RULE OF THE 
N O R M A L  TO THREE DIMENSIONS 

The generalization of the rule of the normal to the 
three-dimensional case is straightforward. Difficulties 
only arise in regions of the hangingwall where more 
than one normal to the fault surface exist. For the fault 
geometry used in the analogue three-dimensional ex- 
periments (Fig. 2b), this situation arises in the vicinity 
of the plane of symmetry in the center of the model 
(region C of Fig. 4), where two (and only two) normals 
intersect, one from each segment of the fault surface. 
The ambiguity, similar to the one arising in two dimen- 
sions from steep fault situations, was removed in the 
following manner: two new particle locations, Xl,a(X) 
and Xl,b(X) are computed by applying the rule of the 
normal along both segments of the fault surface. The 
final particle location, Xl(X), is set to be a weighted 
average of Xl, a and Xl,b, where the weighting factors 
are chosen to avoid discontinuities in the kinematic 
model. 

An analytical expression for the stretch and rotation 
tensors, A and 12, cannot easily be derived in the three- 
dimensional case. We therefore computed numerically 
the deformation gradient, F = (0X/0x). The defor- 
mation gradient was then split into its symmetrical part, 
the stretch tensor A, and its anti-symmetrical part, the 
rotation tensor 12. This operation, called polar decom- 
position, is not straightforward in three dimensions, but 
can be performed at a minimal computational cost by 

making use of the Cayley-Hamilton theorem (Braun 
1994). 

The two principal components of the stretch tensor, 
A1 and A2, that lie in a plane perpendicular to the normal 
to the fault surface were computed in this way for a series 
of points originally at the surface of the hangingwall. 
The condition of incompressibility was then incorpor- 
ated in the model using the following iterative method: 
(1) for every point, the final location was calculated 
without the constraint of incompressibility; (2) that 
position was rectified by adding a component to the 
stretch tensor in a direction normal to the fault surface, 
A n = (1/A1A2); (3) the deformation gradient was recom- 
puted using the rectified position; and (4) if the new 
position differed from the previously calculated one, 
steps (2)-(4) were repeated. 

The computed deformation of the surface of the 
hangingwall is shown in Figs. 10(a) & (b) and may be 
compared to the results of the three-dimensional ana- 
logue experiment (Fig. 4). The kinematic model again 
reproduces all the characteristics of the deformation 
field observed in the analogue experiment; in particular: 

--symmetry about the centre line; 
- -a  very flat surface over the proximal regions P1 and 

P2 of the hangingwall undergoing substantial solid-body 
rotation; 

----extension normal to the fault trace in regions T1 and 
T2 of the hangingwall; 

--almost pure horizontal translation without internal 
deformation in the distal regions D1 and D2; 
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a. M a r k e r s  b. H e n c k y  strain c. S Iopes  
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t 

Fig. 10. Results of the three-dimensional kinematic model. (a) Geometry of an originally regular grid following 
deformation. As in the sand box experiment, the grid was parallel to the fault trace on the left-hand side region of the 
hangingwall and parallel to the edges of the box on the right-hand side. The region labelled C between the two thick black 
lines is the region of the sand pack where there exist two normals to the fault. (b) Distribution of deformation at the surface 
of the hangingwall. The arrows are aligned along the direction of the local maximum stretch components and their 
amplitude is given by the value of the Hencky strain in that direction. (c) Computed surface slopes; the direction of the 

arrows indicate the direction of the local maximum dip and their magnitudes indicate the relative dip. 

----extension in a direction perpendicular to the direc- 
tion of imposed displacement in the central region (C). 
Note that region C corresponds to the portion of the 
hangingwall where normals to both fault segments cross. 

FRICTION ALONG THE FAULT SURFACE 

The rule of the normal is based on the assumption that 
the deformation of the hangingwall is dominated by 
unfolding to conform with the shape of the detachment.  
This assumption is correct in situations where there is no 
drag along the fault. In the analogue experiments, the 
presence of the mylar sheet ensures that frictional trac- 
tions do not cause internal deformation of the sand pack. 
However ,  in nature drag is an intrinsic part of fault 
movement  and in some, if not most, cases it cannot be 
neglected. 

Our kinematic model cannot properly address the 
dynamic problem of fault friction; however it may be 
easily modified to include non-uniform displacement 
along the fault surface including that which would result 
from friction. This is done by introducing an extra 
parameter  in the model: the displacement of the tip of 
the hangingwall, ut < u0, where u0 is the displacement of 
the hangingwall far away from the fault tip. To avoid 
introducing an additional length scale in the model,  we 
parameterize the displacement along the fault surface in 
the following manner: 

Z 
U = U t'q- (U 0 -  b/t) 

f ( x  = oo ) 

= ut + (u0 - ut) f (x)  (21) f(o ) 

This differential movement  along the fault surface gives 
rise to an additional tangential stretch, Af, expressed as: 

OU 
Af = 1 + - - ,  (22) 

Os 

where s is the distance measured along the surface: 

s =  (23) 
o \Ox/ 

Af may also be expressed directly in terms of 8flOx in the 
following manner: 

of 
Af = 1 + (uo - ut__) Ox (24) 

f(oo) ~1 + (Of] 2 
 Ux/ 

In the two-dimensional case, the total tangential 
stretch resulting from the deformation is therefore: 

F* 
1 - - -  

Ao = Af P2, (25) 
r 

1 - -  
El 

and, including the condition of incompressibility: 

rAf r2Af A 2 _ 2-F~- - + 
F1F2 ~ 2  

A o = 
F 

1 - - -  
F1 

(26) 

Figures l l ( a ) - ( c )  show the internal deformation field 
derived from the kinematic model where ut = Uo, ut --- 
(u0/2) and u t = 0, respectively. In cases where u t ~ u 0 
(Figs. l l b  & c), the extension and the associated subsi- 
dence are distributed over a wider area than in the case 
where ut = u0 (Fig. l l a )  but the position of the crestal 
graben is only slightly affected. The quantities ut and u o 
may be determined independently by measuring fault 
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No  friction 

Frict ion 

L o c k e d  

Fig. 11. Results of the kinematic model similar to Fig. 9(c) but including fault drag as an imposed difference between 
displacement along the fault at the tip of the hangingwall block, u t, and along the fiat region of the fault surface, u 0. 
(a) ut = u0. (b) ut = (u0/2)- (c) u t = 0. The small vertical arrows indicate the location of the maximum surface extension as 

computed from the rule of the normal. 

displacement at the tip of the fault and far away from the 
tip of the fault (preferably where the fault is flat) 
respectively, although, in practice, this might be difficult 
to achieve. 

NON-SYMMETRICAL FAULT SURFACE AND 
DIP ANALYSIS 

The use of dip analysis to infer kinematic histories in 
regions of  crustal extension potentially provides a 
powerful alternative to the classical, but effectively two- 
dimensional and idealized, use of fault geometries pre- 
dicted by orthogonal extension (Lister et al. 1986) and 
strike-slip motion (Aydin & Nur 1982, Mann et al. 1983, 
Sylvester 1988) models for basin formation.  Essentially, 
dip analysis is based on the assumption that the dip 
direction of rotated blocks of acoustic basement  in the 
hangingwall above the main detachment  surface corre- 
sponds to the direction of extension or tectonic transport  
(Scott et al. 1994). Dip analysis is therefore independent  
of known or interpreted fault geometries and is suitable 
for non-ideal oblique-slip extensional terranes (Scott et 

al. 1992). Dip analysis relies, however,  on the assump- 
tion that the dip direction of the surface of hangingwalls 
is consistent over  an extensional domain and corre- 
sponds to the direction of extension or tectonic trans- 
port ,  regardless of  the orientation or shape of the 
extension-accommodating fault surface. 

To test this hypothesis,  we use the result of the three- 
dimensional scaled laboratory experiments  described 

fault 

Fig. 12. Plan view of a conceptual oblique-slip extensional terrane. 
The direction of extension is not aligned perpendicular to the strike of 
pre-existing faults. Therefore, extension results in dip-slip and strike- 
slip movement on all fault segments. W is the average length of fault 

segments. 

above. Indeed,  the fault geometry used in the experi- 
ment  represents the general situation shown in Fig. 12, 
where crustal extension is accommodated  by oblique- 
slip along a series of randomly oriented fault segments. 
Such a 'general '  extensional terrane may be character- 
ized by: (1) a depth to detachment ,  z0, assumed common 
to all fault segments; (2) a segmentat ion length scale, W, 
or average length of fault segments; and (3) a listricity 
scale, 2, or average inverse curvature of fault segments. 
The question we wish to answer is then: in which region 
of the (Zo, W, 2) space is dip analysis accurate in 
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providing an estimate of the direction of tectonic trans- 
port? 

The results of the three-dimensional scaled experi- 
ments clearly showed that, in the case where the fault 
surface is symmetrical with respect to the direction of 
tectonic transport, the central region (C) of the hanging- 
wall dips in a direction aligned with the direction of 
tectonic transport. This result is confirmed by the kine- 
matic model as shown in Fig. 10(c). The dip vectors 
computed at the surface of the hangingwall by using the 
rule of the normal are practically aligned with the 
direction of extension within the central region (C) 
whereas they follow exactly the dip of each fault segment 
anywhere else. This result may be generalized to non- 
symmetrical fault geometries: the dip of region C is, 
regardless of the degree of symmetry of the fault surface, 
aligned with the direction of tectonic transport. 

We can therefore conclude that the dip analysis 
method provides a reasonably accurate estimate of the 
direction of tectonic transport if the dip measurements 
are restricted to the central region C of the hangingwall 
surface. Dip measurements made outside of region C 
will yield apparent estimates of the direction of tectonic 
transport aligned with the direction of dip of each of the 
fault segments. The validity of dip analysis therefore 
depends on the proportion of the hangingwall surface 
that is comprised in region C. By assuming that region C 
is the surface expression of the region of the hangingwall 
where normals from each segment of the fault surface 
cross, we may compute its surface area, S c, for a large 
range of parameter values. We derived the following 
relationship: 

S c 
~0 oc tan ~b. (27) 

This relationship tells us that the surface area of region C 
mostly depends on z0, the depth to detachment and q~, 
the dip of the 'master' fault. S c does not depend on the 
angle that the master fault makes with the direction of 
tectonic displacement. Therefore, in an extensional ter- 
rane characterized by fault segmentation at a scale W, a 
depth to detachment z0 and an average fault listricity ~., 
the use of the dip analysis method is justified if 

z 0 > W  and 2 < W .  (28) 

In other words, if extension-accommodating faults are 
steep and consist of short segments relative to the depth 
of detachment, dip analysis is justified as a means of 
constraining the tectonic transport direction. In the 
Tanganyika and Malawi rift zones of East Africa, nor- 
mal to oblique slip border faults are steep (Rosendahl et 
al. 1988, Scholz et al. 1989) and apparently continue to 
deep levels (32 _+ 5 km) as indicated by recent earth- 
quake activity (Jackson & Blenkinsop in press). Seg- 
mentation of the main border faults is common as 
indicated by detailed mapping (Wheeler 1989), espe- 
cially as they approach accommodation zones (Scott 
1994). In this case, dip analysis provides a consistent 
kinematic picture (Scott et al. 1992). 

DISCUSSION AND CONCLUSIONS 

Summary of  results 

A series of two-dimensional scaled experiments have 
been conducted in an attempt to understand the internal 
deformation of a crustal block sliding along a listric 
normal fault. The results of the experiments closely 
resemble the deformation patterns observed by previous 
workers (e.g. Ellis & McClay 1988) in similarly scaled 
analogue experiments. As deformation proceeds, a 
large antiform topped by an extensional graben forms in 
the hangingwall at some distance from the fault tip 
whereas the hangingwall block head deforms by pure 
rigid-body rotation. 

The experiments were then extended to the three- 
dimensional case using a fault surface made of two 
symmetrical listric segments. The results resemble those 
of the two-dimensional experiments in that the regions 
nearest to the fault tip deform by rigid-body rotation and 
two crestal-grabens develop to accommodate extension 
perpendicular to the fault segments. Along the axis of 
symmetry, however, extension in the hangingwall is 
perpendicular to the direction of imposed displacement. 

We have developed a simple kinematic model based 
on the rule of the normal, a generalization of the slip-line 
construction of Williams & Vann (1987). The kinematic 
model reproduces in detail the deformation field ob- 
served in the two- and three-dimensional experiments, 
supporting the conclusion of Ellis & McClay (1988) that 
the deformation of the hangingwall is quasi-independent 
of its mechanical behaviour and is solely determined by 
the shape of the fault surface. 

An additional parameter has been introduced in the 
kinematic model: the displacement of the hangingwall at 
its head, assumed to be different from the displacement 
of the block along the flat portion of the fault surface. 
This modification to the kinematic model adds some 
drag fold character near the head of the hangingwall, but 
the other characteristics of the extensional deformation 
are only slightly modified. 

The results of the analogue experiments and the 
kinematic model support the use of dip analysis to 
estimate the direction of tectonic transport in oblique- 
slip extensional terranes as suggested by Scott et al. 
(1992). This is particularly true in cases where the depth 
to detachment is greater than the average fault segmen- 
tation length and where the average fault listricity is 
smaller than the segmentation length. 

Ramp-flat-ramp fault geometry 

The results of the analogue experiments and the 
kinematic model based on the rule of the normal demon- 
strate that, although the internal deformation of the 
hangingwall is solely controlled by the geometry of the 
fault surface, the geometry of the hangingwall surface is 
not a direct reflection of the geometry of the fault 
surface. In all the cases presented here, the fault geom- 
etry was parameterized as a smooth, monotonic expo- 
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nential curve; despite that, the surface of the hanging- 
wall after deformation displayed complex topography. 
Even in this simple situation where there is no drag along 
the fault and dilatation in the hangingwall is permitted, 
the hangingwall surface topography predicted by the 
kinematic model is not monotonic. When the constraint 
of incompressibility is added to the kinematic model, the 
predicted surface topography is characterized by a well- 
defined trough overlying the region of maximum exten- 
sion. Our results therefore suggest that care should be 
taken before interpreting extensional collapse in the 
hangingwaU as the result of a ramp-flat-ramp geometry 
in the fault surface as suggested by Gibbs (1984). 

Acknowledgements--The authors wish to thank K. Lambeck and R. 
Kerr for the useful suggestions they made during the construction and 
set up of the deformation apparatus, Dan Schultz-Ela and an anony- 
mous reviewer for constructive comments they made on an earlier 
version of this manuscript. Part of this work was done while Geoff Batt 
was a Vacation Scholar at the Research School of Earth Sciences of the 
Australian National University. 

REFERENCES 

Aydin, A. & Nur, A. 1982. Evolution of pull-apart basins and their 
scale independence. Tectonics 1, 91-105. 

Braun, J. 1994. Three-dimensional numerical simulations of crustal- 
scale wrenching using a non-linear failure criterion. J. Struct. Geol 
16, 1173-1187. 

Dula, W. F. 1991. Geometric models of listric normal faults and 
roliover folds. Am. Ass. Petrol. Geol. 75, 1609-1625. 

Ellis, P. G. & McClay, K. R. 1988. Listric extensional fault systems-- 
results of analog model experiments. J. Basin Res. 1, 55-70. 

Fung, Y. C. 1965. Foundations of Solid Mechanics. Prentice-Hall, 
London. 

Gibbs, A. D. 1984. Structural evolution of extensional basin margins. 
J. geol. Soc. Lond. 141,609-620. 

Horsfield, W. T. 1977. An experimental approach to basement con- 
trolled faulting. Geologie Mijnb. 56,363-370. 

Hubbert,  M. K. 1937. Theory of scale models as applied to the study of 
geological structures. Bull. geol. Soc. Am. 48, 1459-1520. 

Jackson, J. & Blenkinsop, T. In press. The Malawi earthquake of 
March 10, 1989: deep faulting within the East African Rift System. 
Tectonics 12. 

Jaeger, J. C. & Cook, N. G. W. 1979. Fundamental of Rock Mechanics 
(3rd edn). Chapman and Hall, London. 

Lister, G. S., Etheridge, M.A. & Symonds, P.A. 1986. Detachment 
faulting and the evolution of passive continental margins. Geology 
14, 245-250. 

Mann, P., Hempton, M. R., Bradley, D. C. & Burke, K. 1983. 
Development of pull-apart basins. J. Geol. 91,529-554. 

McClay, K. R. 1989. Physical models of structural styles during 
extension. In: Extensional Tectonics and Stratigraphy of the North 
Atlantic Margins (edited by Tankard, A. J. & Balkwill, H. R.). 
Mem. Am. Ass. Petrol. Geol. 46, 95-110. 

McClay, K. R. & Ellis, P. G. 1987a. Analogue models of extensional 
fault geometries. In: Continental Extensional Tectonics (edited by 
Coward, M. P., Dewey, J. F. & Hancock, P.L.). Spec. Publs geol. 
Soc. Lond. 28, 109-125. 

McClay, K. R. & Ellis, P. G. 1987b. Geometries of extensional fault 
systems developed in model experiments. Geology 15,341-344. 

Rosendahl, B. R., Versfelt, J. W., Scholz, C. A., Buck, J. E. & 
Woods, L. D. 1988. Seismic atlas of Lake Tanganyika, East Africa. 
Proj. PROBE Geophys. Atlas Ser. 1. Duke University, Durham, 
North Carolina. 

Scholz, C. A., Rosendahl, B. R., Versfelt, J. W., Kaczmarick, K. J. & 
Woods, L. D. 1989. Seismic atlas of Lake Malawi (Nyasa), East 
Africa. Proj. PROBE Geophys. Atlas Ser. 2. Duke University, 
Durham, North Carolina. 

Scott, D. L. 1994. Oblique lithospheric extension: a comparative 
analysis of the East African rift system and some Australian passive 
margins. Unpublished Ph.D. thesis, Australian National Univer- 
sity, Canberra, Australia. 

Scott, D. L., Braun, J. & Etheridge, M. A. 1994. Dip analysis as a tool 
for estimating regional kinematics in extensional terranes. J. Struct. 
Geol. 16, 393-401. 

Scott, D. L., Etheridge, M. A. & Rosendahl, B. R. 1992. Oblique-slip 
deformation in extensional terrains: a case study from the lakes 
Tanganyika and Malawi rift zones, East Africa. Tectonics 11,998- 
1009. 

Sylvester, A. G. 1988. Strike-slip faults. Bull. geol. Soc. Am. 100, 
1666-1703. 

Verral, P. 1981. Structural interpretation with application to North 
Sea problems. Joint Ass. Petrol. Expl. Courses (U.K.), Course 
Notes 3. 

Wheeler, J. 1987. Variable-heave models of deformation above listric 
normal faults: the importance of area conservation. J. Struct. Geol. 
9, 1047-1049. 

Wheeler, W. H. 1989. The Livingstone Mountains border fault sys- 
tem, Lake Nyasa (Maqlawi), East Africa: a case study of an oblique- 
slip rift basin border fault from onshore and sub-surface perspec- 
tives. Unpublished M.Sc. thesis, Duke University, Durham, North 
Carolina. 

White, N.J., Jackson, J. A. & McKenzie, D.P. 1986. The relationship 
between the geometry of normal faults and that of the sedimentary 
layers in their hanging walls. J. Struct. Geol. 8, 897-909. 

Williams, G. & Vann, I. 1987. The geometry of listric normal faults 
and deformation in their hanging-walls. J. Struct. Geol. 9, 789-795. 


